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Our Research in a Nutshell

“Our goal is to develop disruptive new computing paradigms
and machines that will allow for lasting breakthroughs and
open new application domains in the next 5-20 years.”

Emerging paradigms

Architectures

Emerging devices
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frameworks

Tools and simulation




Computing with Structured vs Unstructured Substrates
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Computing with Structured vs Unstructured Substrates

Key challenges:
« precise positioning and
* low-resistance contacts
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Computing with Structured vs Unstructured Substrates
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What’s the next big thing in computing?
And how do we get there?

As feature-size scaling .
and "Moore’ s Law" in { —
CMOS circuits further « o
slow, attention is shifting
to computing by non-von
Neumann, non-CMOS,
and non-Boolean
computing models.
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FIGURE 1. Technology scaling options along three dimensions. The graph's origin rep-

r@ l ’ O O t | ﬂ resents current general-purpose CMOS technology, from which scaling must continue. All

the dimensions, which are not mutually exclusive, aim to squeeze out more computing

CO M p U —l_ | N performance. PETs: piezo-electric transistors; TFETs: tunneling field-effect transistors;

NTV: near-threshold voltage.

New devices and materials

Material Implication

* J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.
Williams. Memristive switches enable stateful logic operations via
material implication. Nature, 464:873-876, 2010.
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Digital Logic Synthesis for Memristors (1)

e J. Burger, C. Teuscher, and M. Perkowski, Digital Logic Synthesis for
Memristors, Reed-Mueller Workshop, pp 31-40, 2013.
Benchmark Inputs | Pulse Gate PulseCount (ABC)
Count count
[10] (ABC)
examl_d.pla 3 29 9 12
exam3_d.pla 4 25 10 12
1d53f1pla 5 30 17 27
Veond Y Vset rd53f2.pla 5 54 30 57
15313 pla 5 121 13 32
3 Q xor5_d.pla 5 121 18 32
conlfl.pla 7 31 11 18
con2f2.pla 7 16 14 19
e rd73f1pla 7 140 104 238
rd732.pla 7 253 26 46
= ABC rd733.pla 7 210 54 104
newill_d.pla 8 6 32 50
newtag_d.pla 8 27 13 21
1d84f1pla 3 212 109 351
18412 pla 3 330 32 47
18413 pla 3 10 15 23
rd84f4.pla 3 420 134 345
9sym_d.pla 9 420 410 1418
» B s max46_d.pla 9 219 200 427
5=0 sao2f1.pla 10 33 56 102
sa02f2.pla 10 31 66 112
520213 pla 10 22 152 380
sa02f4.pla 10 33 125 252
syml0_dpla | 10 1260 | 346 1172
1481_d.pla 16 320 241 1564
[ ]
] [ ] ]
Digital Logic Synthesis for Memristors (2)
[ ]

J. Burger, C. Teuscher, and M. Perkowski, Digital Logic Synthesis for
Memristors, Reed-Mueller Workshop, pp 31-40, 2013.
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Designed versus Intrinsic Computation
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There is no general design theory on how to obtain a desired
computation from intrinsic dynamics for devices that behave
beyond simple Boolean switching.
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Evolution of a designless nanoparticle network
into reconfigurable Boolean logic

S. K. Bose'™, C. P. Lawrence'?, Z. Liu', K. S. Makarenko’, R. M. J. van Damme?, H. J. Broersma?
and W. G. van der Wiel™
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Reservoir Computing / Liquid State Machines

* Fixed reservoir with “interesting” dynamics. No state needed.
* Only the output layer is trained. — Low learning complexity.
* Variation is good! — Easy to fabricate.
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Reservoir Computing / Liquid State Machines
[Obst et al., 2013] [Fernando and Sojakka, 2003]
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Reservoir Computing / Liquid State Machines
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non-temporal
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17001 0010
temporal

Issues and Challenges

1. Create digital building blocks, then use traditional design tools?
2. New approach?
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Hierarchical Networks

Hierarchical Composition of Memristive Networks
for Real-Time Computing

(a) Memristor switching (b) Memristive network (c) Memristive SCR

Burger et al, Nanoarch, 2015




Hierarchical Composition of Memristive Networks
for Real-Time Computing

1,56 ; . : * Hierarchical composition
worse ! ESN = echo state network SCR -v-ESN - mean fh 1
| ol | MSCR = memristive single-cycle reservoir |- : - Eg: - bestt of heterogeneous sma
. \ -<- —worst |
- —4—MSCR - mean networks outperforms
\ —=—MSCR - best e - ..
B —»— MSCR - worst monolithic memristive
w
g 075 networks by at least 20%
z

on waveform generation
tasks.
*  On the NARMA-10 task,
, , , we reduce the error by up
50 100 150 200 250 300 350 400
Reservoir Nodes to a factor of 2 Compared

Fig. 4: NARMA performance for increasing SCR sizes. The to hom(')gene.ous. )
dashed lines are obtained with regular sigmoidal neurons  reservoirs with sigmoidal
(ESN) and v = 0.01 and A = 0.75. The memristive SCR neurons.

(MSCR) data was obtained based on v = 0.5. A = 1.7, and » Single memristive

0.25

better

52 memristive dCViCCS on average per node. networks are unable to
Burger et al, Nanoarch, 2015 produce the correct
n result. n
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Network Topologies: Initial Steps

PHYSICAL REVIEW E 73, 036105 (2006)

Growth model for complex networks with hierarchical and modular structures

Qi Xuan, Yanjun Li,* and Tie-Jun Wu
National Laboratory of Industrial Control Technology, Institute of Intelligent Systems & Decision Making, Zhejiang University,
Hangzhou 310027, China
(Received 30 August 2005; published 3 March 2006)

A hierarchical and modular network model is suggested by adding a growth rule along with the preferential
attachment (PA) rule into Motter’s modeling procedure. The proposed model has an increasing number of
vertices but a fixed number of modules and hierarchical levels. The vertices form lowest-level modules which
in turn i higher-level modules hi i The creation of connections between two vertices in a
single module or in two different modules of the same level obeys the PA rule. The structural characteristics of
this model are investigated analytically and numerically. The results show that the degree distribution, the
module size distribution, and the clustering function of the model possess a power-law property which is
similar to that in many real-world networks. The model is then used to predict the growth trends of real-world
networks with modular and hierarchical structures. By comparing this model with those real-world networks,
an interesting conclusion is found: that many real-world networks are in their early stages of development, and
when the growth time is large enough, the modules and levels of the networks will be ultimately merged.

The first leve

DOI: 10.1103/PhysRevE.73.036105 PACS number(s): 89.75.Fb, 89.75.Da, 05.65.+b

The second level

FIG. 2. (Color online) The network model with M=2, n=3,
m=my=2, q,=09, and growth time 7=30. It is grown up to
N=31 vertices.

* M: number of hierarchical levels
* n: number of modules grouped together to constitute the
modules of the next hierarchical level




Random Boolean Network Reservoir
NK Networks: )
The Origins
e N = number of nodes of Order

e K = interaction between the nodes, i.e., the
number of incoming links per node
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Labyrinth Tasks
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Deep LSM network (D-LSM)
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Fig. 4: The proposed deep LSM network. The image pixels are first converted to spike trains. Each 1st-stage LSM receives 25 spike trains
which corresponds a sub-region of the input image selected by a 5x5 sliding window. As the sliding window moves to cover the entire
image, each 1st-stage LSM generates 24 x24 new spike trains. The pooling/sub-sampling stage is realized by 4-inputs OR gates. After
multiple LSM stages and pooling stages, the extracted features enter the last LSM stage which also incorporates the final readout layer.

Wang and Li, D-LSM: Deep Liquid State Machine with Unsupervised Recurrent Reservoir Tuning, 3rd
International Conference on Pattern Recognition (ICPR), December 4-8, 2016

]
Christof Teuscher W  www.teuscher-lab.com W Portland State University HE

Memcapacitive RC
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Memcapacitive RC: MNIST
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Fig. 4: Reservoir performance and power consumption for the
MNIST task. I = 784,0 = 600, N = 2100. The power measure-
ments represent the average per image.
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Thanks to Students and Sponsors
&
e o SRC Education Alliance, Undergraduate Research Opportunities
¥ X (URO) Program. Sep 2012 - Sep 2016.

« Molecular Computing for the Real World, National Science
Foundation (NSF), CISE, SHF. NSF grant no: 1518833, Sep
1,2015 - Aug 31, 2020. $209,545.

« Unified English Braille through a Powerful and Responsive
eLearning Platform (UEB PREP), Rehabilitation Services
Administration, Department of Education. Sep 1, 2014 - Aug 31,
2019.$548,483

® + DARPA, Sparse Adaptive Local Learning for Sensing and

Analytics (SALLSA). May 3, 2013 - Aug 2, 2017. The project is in
Semiconductor collaboration with the University of Michigan and Los Alamos
Research Corporation National Laboratory. $5.69 million.

« Inference at the Nanoscale, National Science Foundation (NSF),
Cyber-enabled Discovery and Innovation (CDI), Type |l award,
NSF grant no: 1028378, Sep 15, 2010 - Aug 31, 2016 (with NCE)
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